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1. We consider the system of linear differential equations with constant 
coefficients 

d% 
x = P& +. * *+ P&n (9 = 1, . . . ) n) (1.1) 

Suppose that the quadratic form 
n 

v = 2 aijxixj 

1 

with constant coefficients has a derivative which, with the aid of (1.1). 
can be written as 

The connection between the introduced coefficients has the following 
matrix form: 

Al’ + (AP), = B (A = II aij I, B = II bij II) P = II Pij II) (1.2) 

Here c indicates the adjoint (transposed matrix). 

Let us take the system (1.1) in the particular form to which many 
systems of equations in mechanics can be reduced 

dx.zs -1 
7=x 

28’ 

d%v 
dt -TT,xl+x28+1 

(s = 1, . . . . k; ~2k+l~,o) (1.3) 

The characteristic equation of the system (1.3) has the form 

X2k - T1x2k-2 -. . .- T, = 0 (1.4) 

Let us set ourselves the problem of finding for the system (1.3) 

856 
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integrals (solutions) of the type 

V,= 5 aijxixj 

1 

From (1.2) one obtains the equation for the determination of A 

We have 
Al’ + (AP), = 0 (1.5) 

Tlal2 + T2al4 +. . .+ Tkalzk all al2 . . * %2/i-l 

AP= Tla22 + T2a2r +...+ TkaP2k a21 a22 . . * Q22k-1 
(1.6) 

. . . . . . . . . . . . . . . . . . ...*.... 

Tla,k, + T2a,kr-h..+ Tka2k2k afkl a2k2 ’ - * a‘zk2k--1, 

The determination of the matrix A is most easily accomplished by the 
direct use of the table (1.6). Taking into consideration (1.5), we obtain 

0 all 0 -a22 0 a38 . . . 

Tla22-T2aaaf...+(-~)kS1Tkak+l, k+l 0 a22 0 -aa . . . . . 

AP= 0 ---a22 0 a33 . . . . . . . . 

- Tla33 + T2adc -. .+(--1) k+2T a . k k+2, k+? 0 -a33 . . . . . . . . . . 

0 aa3 . . . . . . . . . . . . . 

Introducing the notation a. = (- 1)ja. ., one can express the equations 

for the determination of thest remaining’inknowns in the form 

aj - Tlaj+l - T2aj+2 -. . .- Tkaj+k = 0 (i = 1, . . . , k) (2.8) 

By means of these equations the unknowns al, . . . , ak can always be ex- 
pressed in terms of the remaining ak+ I, . . . , azk which remain arbitrary. 
The matrix A will take on the following form: 

A= 

- al 0 - a2 0 . . .-ak 
O I 

Oa2 0 a3 . . . 0 
Ok+1 

-a2 0 - a3 0 . . .-a k+l ' 

Oa3 0 a4 . . . 0 
ak+2 

. . . . . . . . . . . . . . . . . . . . . 

-a], 0 - ak+l 
0 . . . -a2k-_1 0 ’ 

’ ak+l ' ak+2 . . . 0 
a?k II 

(1.9) 

It breaks up into two Hankel matrices which are easily constructed 
from the rows and columns of A 
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4~ as . . . ak 43 a3 . . .ak+l 

Al=- 4a 43 l ’ l ‘k+l 
I ~~ = 4a ‘4 * * * ak+z 

. . . . ..r... . . . . . , . . . . 

n ak ‘k+l ’ ’ l a2k+i 'k+l 'k+2 * ' ' "2k 

This corresponds to the breaking up of the integral V into two inde- 
pendent forms with even and odd subscripts on the variables 

2k-1 

v=v1+vz, Y,=-- Itf 4*/P~i+~x~Xj (is i - odd f (1.10) 

Let us now return to the solution of Equations (1.8). For these equa- 
tions one can obtain a fundamental system of solutions after one has 

1 

2k 

(i, i - even ) (1.11) 

2 

assigned k systems of values to dk+ I, ek+ 2, . . . , a2k arranged in a 
matrix of the following tyep, for example 

ak+l”’ . . ’ %k 
(11 

_sp z ‘k+l 
12) . . *4*p) 

‘k+l(k’ 

(k) lb 0... l/l 
. . + a2k 

In accordance with this we obtain k linearly independent quadratic 
integrals V(l), . . . . V(k); every other integral will be a linear combi- 
nation of these integrals of the form 

V = A@) +. . + h, V(Q ($ = const) (1.13) 

The absence of nonlinear relations among the integrals V(j) follows 
from the fact that a certain Jacobean does not vanish, i.e. that. for 
example 

a (Y(l) . . . V(k)) 
afxs?, . . . ik) 

=ld+=o 
1 

if x~=...=x~~_~ =o, 3+k-_-i- 

2. It can be easily seen that Equation (1.81 can be satisfied by 
setting 

2k-j 
4j=Pm (i = 1, . . ., 2k) (2.1) 

where pa is the square (pm = 6:) of an arbitrary root K& of the character- 
istic equation (1.4). In case of the absence of multiple roots K,,, we 

will have a fundamental system of solutions of Equation (1.8) if we 
select the matrix A’ as 



Quadratic integruir of linear mechanical system 859 

p*lk--l Plk--2 2 . . Pl 1 
A,= . . . :. . . . . . . 

(2.2) 

Let us make the change of variables 

% = “zk-%+I % = xzk-zsf2 (s = 1, . . . ( k) (2.3) 

Then Formulas (1.10) and (1.11) take on the following form in terms 
of the new variables: 

VI = - 5 a2k-_i_j+lEitjs 

k 

v2 = 2 a~k-t-j+~YliTj (2.4) 
1 1 

In the case under consideration, when one selects the values (1.14) 

for the aj, one obtains 
k 

~~(4 = _ 2 ymi+j-l fi’!j = - pm (‘& + pm& f ’ ’ ’ f pmk-lEk)a 

1 

v&m) = i y,i+j-2yirj = (?, + PmT2 +. . . + pmk--lqk)a 

(2.5) 

1 
One more linear substitution 

%,, = %i + p&x +’ ’ ’ + &,,k-l~kS ‘,,, = ?I + i+,%J +’ ’ ’ + tL,k-l?I, 

(m = 1, . . . , k) (2.6) 

which is nonsingular for simple roots K~, leads to differential equations 

for the functions aa, v,, which have the Hamiltonian structure 

where k k 

(2.7) 

1 1 

We note that if the individual integrals Y(l) for real variables ti, 

vi are complex numbers, then (for real Tj, which nil1 always be assumed 
to be the case in the sequel) the integral K will take on only real 
values for arbitrary CL,. 

We shall give a more explicit form to this integral. Introducing the 

usual notation in the Newton sums 

we obtain 

sj = i &, s,, = k (2.9) 
?a=1 

k k 

2K = - 2 'i-+j-1F;IEj + 2 S*+j_21iqj 
(2.10) 

1 1 
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The integral K is closely related to the problems on the stability of 
motion [ 1,2 1. If the equations of the first approximation of the per- 

turbed motion have the form of the system (1.31, then one can easily see 
that it is necessary and sufficient, in order to have stability of the 

first approximation, that the integral K be positive-definite ( > 9 1. 

Indeed, since the elementary divisors of the system (1.3) are always re- 
latively prime, stability implies the pure imaginary nature and simpli- 
city of the roots of the characteristic equation (1.41, and, hence, in 

view of (2.8), the positiveness of K. The converse of this statement 
follows directly from the generally known theorem of Liapunov on the 

stability of motion. 

As could be expected, Equations (1.8) for the determination of aj in 

the construction of the integral K lead to some of the algebraic formulas 

of Newton 

which must be augmented with the remaining equations 

The conditions for the positive-definiteness of K are equivalent to 
known algebraic conditions [3,4 1 on the simplicity and Pure imaginary 

nature of the roots of Equation (1.41. 
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